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A theoretical device and a technique have been developed by which one can study, 
in a unifying manner, additive properties of hydrocarbons and the symmetric property 
of the spectrum of alternants. By using functionals introduced in the approach via the 
aspects of form and general topology, a special version of the Asymptotic Linearity 
Theorem (for the study of additivity problems of the zero-point vibrational energy of 
hydrocarbons and the total pi-electron energy of alternants) has been obtained in parallel 
with a derivation of the spectral symmetry of alternants. 

1. Introduction 

Special magnitudes of universal constants and specific forms of functions 
manifest themselves in the expressions of natural laws. Nevertheless, it is sometimes 
legitimate and meaningful to embed fixed constants or functions into a broader 
context and make them change. For example, one can regard the Planck constant 
as a variable and let it tend to zero so that one recognizes classical mechanics to 
be a limit of quantum mechanics. 

In the study of additivity problems of the zero-point vibrational energies 
(ZPVEs), it was a significant step to embed the square root function in a formula 
E = ( h / 2 ) ~  into a functional space endowed with a suitable topology, allowing 
the function to change in the space. 
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New approaches using the aspects of form and general topology [1-5] based 
on the above process of embedding a fixed function into a functional space have 
made it possible to unite the zero-point vibrational energy additivity problem [ 1-14] 
with that of the total pi-electron energies (TPEEs) of alternant hydrocarbons 
[2-5,  15-25], which have long been investigated as separate problems. 

The present paper proceeds along the lines of these approaches and provides a 
special version of the Asymptotic Linearity Theorem (for the study of additivity problems 
of the ZPVE of hydrocarbons and the TPEE of altemant hydrocarbons), and derives the 
spectral symmetry of altemants using functional a introduced in ref. [2]. 

The symmetry of the spectrum of adjacency matrices associated with the 
altemants is well known, and it can be understood by the Coulson-Rushbrooke 
Theorem (see a recent review article [26] on this theorem and the references therein). 

The idea of the striking connection between functional a and the spectral 
symmetry naturally follows from closer observation of the special version of the 
Asymptotic Linearity Theorem given in section 2. 

2. Alpha Space Asymptotic Linearity Theorem 

Let X(q) (with a fixed q ~ 7/+) denote the real linear space of all matrix 
sequences whose Nth term MN is an arbitrary qN × qN real symmetric matrix equipped 
with the linear operations defined by 

{MN} + = {MN + M'N}, 

k{MN} = {kMN}, 

(2.1) 

(2.2) 

N ~ Z  + [1,2,4,5]. In the space X(q), operations o, ~,  and (.)" were also defined: 

(1 , , } {MN} o {M~v } = -~(MNM N + MNMN) , (2.3) 

IV{MN} = {Co MO + Cl M1 + . . .  + cnM~I}, (2.4) 

{MN} n = {M~v}, (2.5) 

and they were called, respectively, the Jordan product operation, the polynomial 
operation associated with polynomial V= Co t° + cl t 1 +. •. + cnt n with real coefficients, 
and the nth power operation, n ~ Z~. 

Let the repeat space X,(q), alpha space Xa(q), and beta space Xtj(q) with 
block-size q be defined as in refs. [1,2,4,5]. 

Theorem 1 given below, which.was obtained by an approach using the aspect 
of form, played an important role in establishing fundamental theorems for the 
study of the additivity problems of the ZPVEs and TPEEs: 
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(i) the ~z Existence Theorem [2], 

(ii) the o¢ Independence Theorem [2], 

(iii) the ~z Representation Theorem [4], 

(iv) the Asymptotic Linearity Theorem [5]. 

The Alpha Space Asymptotic Linearity Theorem (XaALT), which we shall 
establish in this section, is a specialized version of the (iv) above, the Asymptotic 
Linearity Theorem (ALT). We shah use theorem 1 for the proof of the XaALT. 

THEOREM 1 

Let {rN}, {r;v} ~X~(q), {aN}, {ak} ~Xa(q)  and {b/v}, {b~} ~XIj(q) be arbitrary, 
let k, k' denote any real numbers, and let ~ =  Cot ° + cl t  1 + . . .  + cnt n denote any 
polynomial with real coefficients. Then the following are true: 

(i) 

(ii) 

if 

then 

(iii) 

Remark 

k{r/v} + k'{r/¢} ~ Xr(q) , (2.6) 

{r/v } o {r/c} ~ X~(q), (2.7) 

~({r/v }) ~ Xr(q), (2.8) 

k{a/v} + k'(a'/v) ~ Xc~(q), (2.9) 

(a/v) o (a~v} ~ Xa(q) , (2.10) 

1/~({a/v }) ~ Xa(q) , (2.11) 

k(b/v) + k'(b'N] (2.12) 

(rN} o (bN) = (b/v} o (rN} e X[j(q), (2.13) 

{r/v} - {r~} ~ Xl3(q ) holds, 

~({r/v}) - ~({r~)) ~ Xfl(q) is true. (2.14) 

Relations (2.8) and (2.11), respectively, imply that Xr(q) and Xa(q) are closed 
under any polynomial operation. Note that Xl~(q) is not always closed under polynomial 
operation (e.g. if ~'= 1 + t, then Ip({b/v}) ~ X#(q)). However, X,(q), Xa(q), and 
Xij(q) are all closed under the linear operations, i.e. they are linear subspaces of 
X(q). 

Now recall the ZPVE of a linear chain Ch~ with cyclic ends which consists 
of N particles of mass 1 at separation 1 with nearest-neighbour interaction whose 
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force constant is 1 [2]. Let {MN} denote an element of the alpha space Xa(1) with 
block-size 1 such that MN is an N × N matrix given by 

M N =  

2 -1 -1 
-1 2 -1 zeros 

-1 2 

-1 

zeros 
2 -1 

-1 2 -1 
-1 2 

(2.15) 

for all N > 2. 

Put h/2 = 1 for simplicity. Then the ZPVE EN of  the linear chain Ch~ is 
expressed by 

N 

E N = ~_~ ~O(~i(M o)) = Tr q3(Mu), 
i=l 

(2.16) 

where )~i(MN) denotes the ith eigenvalue of MN, the ~p denotes the function 
q~: t ~-~ Itl lie defined on a fixed closed interval I compatible with {MN} (see refs. 
[1,2,4,5] for the definition of  a function of a matrix and the compatibility of  I). 

The eigenvalues of  M u with N > 2 can be obtained explicitly in terms of the 
sine function. Using a simple formula for the sum of the trigonometric functions, 
one obtains an analytic expression for EN: 

E N = 2 cot(~/2N).  (2.17) 

1 0 + (higher-order terms) for 0 ~ (0, ~), we can express Since cot 0 = 1 / 0 -  -~ 

EN = a N  + o(1) (2.18) 

as N ---> o% where a = 4/re. This shows that E N has an asymptotic line whose intercept 
vanishes. 

The Asymptotic Linearity Theorem can be applied to the above system since 
{Ms} ~Xa(1)  c X r ( 1 ) ,  and one can predict that EN has an asymptotic line a N +  fl, 
where a,  fl ~ R. However, from the Asymptotic Linearity Theorem it does not 
follow that the intercept fl should vanish. 

By straightforward calculations of matrix multiplications, for large enough 
N's,  we see that the second power of  MN is given by an N x N matrix: 
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M 2 =  

6 - 4  1 1 - 4  
- 4  6 - 4  1 1 

1 - 4 6 zeros 
1 

1 
zeros 6 - 4 1 

1 - 4 6 - 4  
- 4  1 1 - 4 6 

(2.19) 

Calculating M k further (k = 3, 4 . . . .  ), one can inductively find that M k 
possesses a repeating pattern along the diagonal and that Tr M~ = ctkN for all N >> 0 
(for all N greater than some given positive integer), where ak is a real number 
dependent on k (ao = 1, ct I = 2, a 2 = 6, cq = 20 . . . .  ). 

Hence, given a polynomial function q~ with tp(t) = Co t° + clt 1 + . . .  + cnt n, 
one can conjecture that Tr tP(MN) = (Y'~,=I Ckak)N for all N >> 0 and that for any 
polynomial function ~p defined on I, Tr ¢p(M N) has an asymptotic line which goes 
through the origin. In fact, this can be verified generally by theorem 2 given below. 

Henceforth, by P(I) we shall denote the set of  all polynomial functions with 
real coefficients defined on a closed interval I. 

THEOREM 2 (X,,PALT) 

Let {MN} ~Xa(q) be a fixed a sequence, let I be a fixed closed interval 
compatible with {MN}. Then for any element tp ~ P(l), there exists an a(tp) ~ R 
such that 

Tr tp(MN) = a(q))N 

for all N >> 0. 

(2.20) 

Proof 
Let tp be such that 

q)(t) = Co t° + clt 1 + . . .  + cnt n, 

t E I. Then we have 

eP(MN) = Co MO +clM 1 + . . .  + cnM~t. 

(2.21) 

(2.22) 

Recall the fact that the a space with block-size q, Xa(q), is closed under any 
polynomial  operation (cf. theorem 1). By this closure property and (2.22), we easily 
see that 

{ ~p(MN) } E Xa(q). (2.23) 
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On the other hand, by the definition of  Xa(q), for all N >> 0, the qN × qN matrix 
~o(MN) possesses, along the diagonal, N repeating q × q submatrices Q0(~0). Putting 

c~(¢p) = Tr Q0(cP), (2.24) 

the conclusion follows. [] 

We shall call the above theorem the a Space Polynomial Asymptotic Linearity 
Theorem (XaPALT). 

As we demonstrated the Asymptotic Linearity Theorem (ALT) using the 
Polynomial Asymptotic Linearity Theorem (PALT) [5], we can derive the a Space 
Asymptotic Linearity Theorem (XaALT) from the a Space Polynomial Asymptotic 
Linearity Theorem (XaPALT), which we shall do below. 

Let CBV(I) denote the real normed space of all real-valued continuous functions 
of  bounded variation defined on a closed interval I = [a, b] (a, b ~ R, a < b) equipped 
with the norm given by 

cp II = sup I ¢p(t) I + Vt (cP), (2.25) 
t e l  

where Vl(~p) denotes the total variation of ¢p on I. Then the closure P of  P = P(/)  
in the normed space CBV(I) forms a closed subspace of  CBV(I) and contains all 
the functions t ~ It I ~ (~ > 0) defined on 1. 

Now we are ready to state and prove 

THEOREM 3 (X,~ALT) 

Let {MN} ~Xa(q) be a fixed a sequence, let I be a fixed closed interval 
compatible with {Mu}. Then, for any element e¢ ~ F in the normed space CBV(1), 
there exists an a(~o) ~ R such that 

Tr ~O(MN) = a(~o)N + o(1) (2.26) 

as N ---) oo. 

Proof 

Recalling the fact that Xa(q) c X,(q), we can apply the Asymptotic Linearity 
Theorem to conclude that, for any ¢p 6 P, there exist a(q~), fl(~o) ~ R such that 

Tr ¢p(MN) = a(~p)N + fl(tp) + o(1) (2.27) 

as N- - ,  oo. Here, one can regard a(t,o) as a value of  a continuous functional a :  
C(1) ---) R defined by 

a(cp) = lim [Tr ~p(MN)]/N, (2.28) 
N---~,oo 
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and/3(~0) as a value of a continuous functional/3: F ~ R defined by 

fl(rp) = lim flN(~o), 
N---~', 

where 

(2.29) 

/3N (q~) = Tr ~p(M2v) - a(~0)N. (2.30) 

See section 3 for the continuity of a. In ref. [5], it has been proved that 
functionals fl, fl__: CBV(I) ---> R defined by 

fl(~p) = lim sup/3N(cp), 
N--)~* 

/3(~o) = lim inf fin (~P) 

(2.31) 

(2.32) 

are both continuous. Thus, we easily see that fl is a continuous functional. 
By theorem 1, fl vanishes on the subset P, 

/3(P) = {0}. (2.33) 

However, /3 is continuous so that we have fl(P) c fl(e) and 

fl(P) c {0"-} = {0}. (2.34) 

On the other hand, it is clear that 

/3(-fi) D/3(P) = {0}. (2.35) 

Therefore, /3 vanishes on the closure P of P, 

/3(P) = {0}, (2.36) 

from which the conclusion follows immediately. [] 

Note that if S is an arbitrary subset of the domain of fl, then (i) implies (ii), 

(i) fl(S) = {0}, (2.37) 

(ii) /3(S)= {0}. (2.38) 

Likewise, if S is any subset of C(I), a(S) = {0} implies a(S') = {0}. We shall use 
this property of a to derive the spectral symmetry of altemants in section 3. 

Remark on theorem 3 (XaALT) 

We have proved theorem 3 (XaALT) by using the ALT (the Asymptotic 
Linearity Theorem), theorem 2 (the a Space Polynomial Asymptotic Linearity 
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Theorem),  and the continuity of  the functional fl defined by (2.29). It should be 
remarked that the XaALT and the ALT involve the same broad function space 
P" c CVB(I),  from which the strength of  these two theorems arises. 

The reader is referred to refs. [1,2] and [4] for an explanation of  the usual 
approaches to the additivity problems. These conventional approaches are not effective 
for establishing the ALT [1,5] and the XaALT above, which are formulated in a 
new and broader context. 

3. Alpha functionals and spectral symmetry of alternants 

Let C(1) denote the real norrned space of all real-valued continuous functions 
defined on a closed interval I = [a, b] (a, b ~ R, a < b) equipped with the sup norm 
I1" I1,. given by 

II ~o II,-- sup I q~(t) I. (3.1) 
t e l  

We note that, since I is compact ,  the supremum is always achieved, so sup could 
be replaced by max in the definition of II<PlI~. 

Let {MN} ~Xr(q) be a fixed repeat sequence, let I be a fixed closed interval 
compatible  with {MN}. The functional a :  C(I) ---> R defined by 

a(q~) = lim [Tr q~(MN)]/N (3.2) 
N-->~ 

is l inear and bounded; henceforth,  it will be called the "alpha functional of  {MN} 
with domain C(I)". (Note that the functional is well defined by the a Existence 
Theorem.)  

The  functional is indeed linear, i.e. 

a(klcpl + k.2~p 2) = kla(~p l) + k2a(~p2) (3.3) 

holds for all ~p~, ~2 E C(I) and k~, k 2 E R. The validity of this relation follows from 
the easily verifiable equality 

(klq91 + k2¢P2) (MN) = kl(q~l(MN)) + k2(q~2(MN)), (3.4) 

and the linearity of  the trace operation and the "limN~**". 
The functional is bounded,  i.e. there exists a constant c ~ R such that 

I a(ep) I -< c II ¢P I1~0 (3.5) 

holds for all ~p ~ C(I). This follows immediately from the inequalities 

la(~p)l < lim ~I~p(&,.(MN)) I /N  < qll~Pll~. 
N--~'~ i=1 

(3.6) 
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Hence, we see that a is linear and bounded, thus continuous. We remark that 
the continuity of a can also be proved by the continuity of  the functionals 
-if, a_q.: C(1) ---> R defined by 

~(~o) = lim sup [Tr tp(M N)l/N, (3.7) 
N---~ 

a(~0) = lim inf [Tr tp(Mu)]/N, (3.8) 
N--~,~ 

(see ref. [2] for details). 
Now we can exactly formulate the statement on a given at the end of  

section 2. 

PROPOSITION 1 

Let {Ms} ~Xr(q) be a fixed repeat sequence, and let I be a fixed closed 
interval compatible with {Ms}. Let a be the alpha functional of {MN} with domain 
C(1), and let S be any subset of C(I). Then (i) implies (ii), 

(i) a (S)  = {0}, (3.9) 

(ii) a(S) = {0}. (3.10) 

Proof 
By the continuity of a, (ii) follows from (i) by the argument analogous with 

that in the proof of theorem 3. [] 

We shall use the following proposition to verify the spectral symmetry of 
altemants. 

PROPOSITION 2 

Let a > 0 and 1 = I - a ,  a]. Let Co = Co(l) denote the closed subset of C(1) of 
all odd functions and let Po = Po(1) denote the subset of P(I) of all odd polynomial 
functions. Then (i) implies (ii), 

(i) a(Po) = {0}, (3.11) 

(ii) a(Co)= {0}. (3.12) 

Proof 
By proposition 1, to prove proposition 2, it is enough to prove the following 

proposition 3. [] 
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PROPOSITION 3 

Let Po, Co be as in proposition 2. Let Ce = C~(I) denote the closed subset of  
C(I) of  all even functions and let P~ = P~(1) denote the subset of  P(1) of  all even 
functions. Then ~ = Ce and ~oo = Co, where the upper bar denotes the closure operation 
in the normed space C(I). 

Proof 
For any tp ~ C(1), let q~ and q~o denote the even and odd part of  q~ defined 

by 
1 ~oe(t) = 2(~o(t) + ~0(-t)), for all t ~ I, (3.13) 

~Oo(t) = } (q~(t) - ~0(-t)), for all t 6 I. (3.14) 

Note that C~ = { q~ (~ C(1)" q~e = ~o} and Co = { tp 6 C(l): tpo = tp}. The following properties 
are easy to verify: 

( i )  ~o = ~oe + rPo. 

(ii) ~ t p ~  < H~oll®, 

U ¢Poll~ -< II q~ I1~. 

(iii) (kilo 1 + k2~02) e = kgOle + k2q~2e, 

( k l ~  1 4- k2(P2)o = klfPl o -t- k2(P2o , 

for all ¢p~, ¢P2 6 C(I), k~, k2 ~ R. 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

Now, let ¢ ~ Ce and e >  0. The Weierstrass approximation theorem implies 
that there exists p ~ P  such that I I ¢ - p l L <  e. The (ii) and (iii) imply that 

II ¢ - p d L  = II ( ¢ -  pLIL - I I ¢ - p l L  < e. (3.20) 

Thus, Pe is dense in Ce. Similarly, Po = C o. [] 

Now we shall recall the structure of  the repeat space Xr(q) with block-size 
q. The repeat space X,(q) can be expressed as a sum of its subspaces, the alpha 
space Xa(q), and the beta space X[j(q), 

X,(q) = Xa(q) + Xo(q). (3.21) 

By theorem 1, we can concisely write out the relationship between subspaces 
Xa(q) and X#(q) with respect to the Jordan product operation, 
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(i) Xa(q) o Xa(q) c Xa(q), (3.22) 

(ii) Xa(q) o X3(q) c Xo(q), (3.23) 

(iii) X3(q)o Xa(q) c X#(q), (3.24) 

(iv) X3(q) o X3(q) c X3(q), (3.25) 

where Xi(q) o Xj(q) = {a o b: a ~ Xi(q), b ~ Xj(q)}, i , j  = a, ft. 
We define new subspaces of Xa(q) as follows. 
Let Xa(q) denote the subspace of×a(q) of all matrix sequences {MN} ~X,x(q) 

such that 

M N = B-diag(M 1, M 1 . . . . .  MQ, (3.26) 

N ~ Z +, where M1 is a q × q real symmetric matrix, and B-diag reads "the block 
diagonal matrix whose diagonal blocks are given by . . . " .  

Let ql, q2 ~ Z+, and q = ql + q2. We shall also define two subspaces X,~(ql, q2) 
and X~(ql, q2) of X,~(q) as follows. 

The subspace X~(ql, q2) of Xa(q) is defined to be the set of all matrix sequences 
{MN} ~Xa(q) such that MN is given by (3.26) and that 

I Wll zeros / 
M 1 = 

\zeros W12 J 
(3.27) 

where Wll denotes a ql × ql real symmetric matrix and W22 denotes a q2 × q2 real 
symmetric matrix. 

The subspace Xa(ql, q2) of Xa(q) is defined to be the set of all matrix sequences 
{MN} ~Xa(q) such that MN is given by (3.26) and that 

M 1 = (zer°s I W12 1 
~. W21 zerosJ 

(3.28) 

where WI2 denotes a ql × q2 real matrix and W2~ denotes a q2 × ql real matrix. (Note 
that W~2 = W21 by the symmetry of M1.) 

We shall call Xa(q), X~(ql, q2) and X~(ql, q2), respectively, the diagonal 
space with block-size q, plus diagonal space with block-size (ql, q2), and minus 
diagonal space with block-size (ql, q2)- We shall also call each element of Xd(q), 
X,~(ql, q2) and X~(ql, q2), respectively, a diagonal sequence, a plus diagonal sequence, 
and a minus diagonal sequence. It is easy to see that Xa(q), with q = ql + q2 can be 
expressed as a sum of its subspaces X~(ql, q2) and X~(ql, q2), 

Xa(q) = X,~(ql, q2) + X~(ql, q2). (3.29) 
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(i) 

(ii) 

(iii) 

(iv) 

Proof 

Let us pay attention to the relationship between the subspaces X~(ql , q2) and 
Xd(ql, q2) with respect to the Jordan product operation. 

THEOREM 4 

The following statements are true for all ql, q2 E77+: 

X~(ql, q2) ° X~(ql, q2) c X~(ql, q2), (3.30) 

X~(ql, q2) ° Xd(ql, q2) c Xd(ql, q2), (3.31) 

Xd(ql, q2) ° X~-(ql, q2) c Xd(ql, q2), (3.32) 

Xd(ql, q2) ° Xd(ql, q2) c X~(ql, q2). (3.33) 

By the definitions of X,~(ql, q2), X~t(ql, q2), and the Jordan product operation, 
the validity of each statement follows from the fundamental formulae for block- 
wise multiplication and addition of block matrices. [] 

THEOREM 5 

The minus diagonal space X~t(q 1, q2) with block-size (q~, q2) is closed under 
any odd polynomial operation. 

Proof 

Let {MN} EXa(ql, q2) be arbitrary and let 

Itt= cl tl + c3 t3 + • • • + C2n+l t2n+l (3.34) 

be any odd polynomial with real coefficients. By the definitions of the polynomial 
operation and the power operation, we have 

~I{MN} = Cl {Ms} 1 + C3 {MN} 3 + . .  • + CZn+l {MN} 2n+l. (3.35) 

However, by theorem 4 and the relation 

{MN} k = {MN} k-1 ° {MN} (3.36) 

valid for k ~ 7/+, it follows that 

{MN} 2''÷1 e Xd(ql, q2) (3.37) 
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for m = 0, 1, 2 . . . . .  n. Since Xd(ql, q2) is a linear space, by (3.35) and (3.37) one 
obtains 

I~ {M N } e X d (ql, q2), 

from which we are led to the conclusion. 

(3.38) 

[] 

It is well known that adjacency matrix A of any altemant can be written in 
the partitioned form, 

A = ~. BT zeros ' (3.39) 

where B is a ql xq2 real matrix with ql, q2~7/+ [15-17]. Thus, {MN} ~Xd(q), 
q = ql + q2, defined by 

M N = B-diag(A, A . . . . .  A), 
N 

is an element of Xd(ql, q2). 
We wish to have the following 

(3.40) 

THEOREM 6 

Let {MN} ~X-a(ql, q2) be a fixed minus diagonal sequence with block-size 
(ql, q2). Let I = [ -a ,  a] be a closed interval compatible with {MN}. Let a be the 
alpha functional of {MN} with domain C(I). Then the following equalities are true: 

(i) a(Po) = {0}, (3.41) 

(ii) a (Co)= {0}, (3.42) 

where Po and Co are defined as in proposition 2. 

Proof 
(i) By theorem 5 and the definition ofX](ql ,  q2), for any ~0 ~ Po, all the diagonal 

elements of matrices ~O(MN) vanish so that a(qg)= 0. 

(ii) By (i) and proposition 2, the conclusion follows. [] 

COROLLARY 

Let ql, q2 ET/+, and let {MN} ~X~t(ql, q2). Then the spectrum of M1 (which 
is contained in the real line) is symmetric around the origin; moreover, the algebraic 
multiplicities of the pairing eigenvalues coincide. 
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Proof 
For each Z ~ (0, a] and small enough e > 0, consider a function tpz, c ~ Co(l) 

such that q~x,c(rl:Z)= :t:1 and that the values of ~oz, e vanish except on the e- 
neighbourhoods of Z and - Z .  

[ 

- a  

~ Z  

• . s l ~  .s 

-1 

I - ' t  

a 

Fig. 1. A sketch of  the function ~0x, e. 

Then theorem 6(ii) implies that 

q 

O~(tpz,e ) = ~ q~z,e(/q,i(M1)) = 0, (3.43) 
i=1 

from which the conclusion follows immediately. [] 

Now we can immediately derive the spectral symmetry of altemants, or the 
spectral symmetry of the adjacency matrix A given in (3.39), using the above 
corollary (put MI = A), which has been obtained in parallel with the Alpha Space 
Asymptotic Linearity Theorem through the approach via the aspects of form and 
general topology. 

4. Concluding remarks 

We remark that all the theorems (i) aET, (ii) alT, (iii) txRT, (iv) ALT, which 
are listed in the beginning of section 2, can be proved in two steps: 
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(I) ~r(S) = {T}, (4.1) 

(II) ~(S) = {T}, (4.2) 

where ~z denotes a continuous mapping from a normed space El to a non-Hausdorff  
topological space E 2, and S denotes a subset of  El; {T} denotes a closed singleton 
set in E2 (see ref. [5] for details). 

These theorems ( i ) - ( iv )  can also be derived in two steps similar to those used 
in the present paper. 

We shall here give a sketch only for the a Existence Theorem. Define a 
continuous functional toa: C(1) ---> R by 

¢oa = g ° fez, (4.3) 

where two continuous mappings fa" C(1) ---> R 2 and g" R2---> R are defined by 

f,,(~0) = (~(~o),_a(~o)), (4.4) 

g(Xl,X2) = X 1 -- X2, (4.5) 

and where ~ ,  _a are defined by (3.7) and (3.8), respectively (cf. ref. [5] for the 
continuity of  fa). 

Then we can prove the a Existence Theorem in two steps: 

(i) 09a(P) = {0}, (4.6) 

(i i)  ¢oa(P) = {0} ,  (4 .7)  

as we proved the XaALT and theorem 6 in the present paper. 
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